Table of Contents GRADE 5•MODULE 1

Place Value and Decimal Fractions

Module Overview
\qquad
\qquad
Topic A: Multiplicative Patterns on tho V.Topic B: Decimal Fractions and P e Value Pa75
Topic C: Place Value ar nou ingeotmal Frg ons..................................... 102 129
138
Topic aplyin ecimals. 163
Topic r. ividing Decimals. 189
End-of-Miodule Assessment and Rubric 244
Answer Key 253

NOTE: Student sheets should be printed at 100% scale to preserve the intended size of figures for accurate measurements. Adjust copier or printer settings to actual size and set page scaling to none.

Name \qquad Date \qquad

1. Record the digits of the first factor on the top row of the place value chart. Draw arrows to show how the value of each digit changes when you multiply. Record the product on the second row of the place value chart. The first one has been done for you.
a. $4.582 \times 10=$ \qquad

b. $7.281 \times 100=728.1$

c. $9.254 \times 1000=9254$

d. Explain how and why the value of the 2 changed in (a), (b), and (c).
(a) The 2 became 10 times bigger.
(b) The 2 became 100 times bigger.
(c) The 2 became 1000 times bigger.
2. Record the digits of the dividend on the top row of the place value chart. Draw arrows to show how the value of each digit changes when you divide. Record the quotient on the second row of the place value chart. The first one has been done for you.
a. $2.46 \div 10=$ \qquad 0.246

b. $678 \div 100=$ \qquad 6.78

c. $67 \div 1000=0.067$

d. Explain how and why the value of the 6 changed in the quotients in (a), (b), and (c).

$$
\begin{aligned}
& \text { (a) The } 6 \text { became } 10 \text { times smaller. } \\
& \text { (b) The } 6 \text { became } 100 \text { times smaller. } \\
& \text { (c) The } 6 \text { became } 1000 \text { times smaller. }
\end{aligned}
$$

3. Researchers counted 8,912 monarch butterflies on one branch of a tree at a site in Mexico. They estimated that the total number of butterflies at the site was 1000 times as large. About how many butterflies were at the site in all? Explain your thinking and include a statement of the solution.

$$
8,912 \times 1000=8,912,\left.000 \quad \frac{1+1819+1}{} \right\rvert\, \frac{1}{8911201010 .}
$$

4. A student used his place value chart to show a number. After the teacher instructed him to divide his number by 100, the chart showed 28.003 . Draw a picture of what the place value chart looked like at first.

a. Explain how you decided what to draw on your place value chart. Be sure to include your reasoning about how the value of the digits was affected by the division.

Each digit in "After" should be 100 times smaller than "Before".
5. On a map, the perimeter of a park is 0.251 meters. The actual perimeter of the park is 1000 times as large. What is the actual perimeter of the park? Explain how you know using a place value chart.

$$
0.251 \times 1000=251
$$

Name \qquad Date \qquad

1. Solve.
2. s.000x $\times 360,300$
e. $0.24 \times 100=24$
b. $36,000 \div 10=3,600$
f. $24 \div 1000=0.024$
c. $4.3 \times 10=$ 43
g. $4.54 \times 1000=4540$
d. $4.3 \div 10=0.43$
h. $3045.4 \div 100=30.454$
3. Find the products.
4. $14580 \times 10 \cdot 145600$

The number of zeros in 10 or 100 or 1000 tells how many columns to the left each digit gets moved.
d. Explain how you decided on the number of zeros in the products for (a), (b), and (c).
5. Find the quotients.

The number of zeros in 10 or 100 or 1000 tells how many columns to the righteach digit
gets moved.
c. Explain how you decided where to place the decimal in the quotients in (a), (b), and (c). adjacent base ten units from millions to thousandths.
4. Ted says that 3 tenths multiplied by 100 equal 300 thousandths. Is he correct? Use a place value chart to explain your answer.

5. Alaska has a land area of about $1,700,000 \mathrm{~km}^{2}$. Florida has a land area $1 / 10$ the size of Alaska. What is the land area of Florida? Explain how you found your answer.

\qquad Date \qquad

1. Write the following in exponential form (e.g., $100=10^{2}$).
a. $1000=$

d. $100 \times 10=$ \qquad
b. $10 \times 10=10^{2}$
e. $1,000,000=$ \qquad 10^{6}
2. Write the following in standard form (e.g., $4 \times 10^{2}=400$).
. $4 \times x 0^{\circ}=4000$
e. $6.072 \times 10^{3}=6072$
b. $64 \times 10^{4}=6$
f. $60.72 \times 10^{\circ}=607200$
c. $5300 \div 10^{2}=53$
g. $948 \div 10^{3}=0.948$
d. $5,300,000 \div 10^{3}=5300$
n. $94 \rightarrow 50^{0}=0.094$
3. Complete the patterns.
0.0202202000
b. $3,400,000 \quad 34,000 \quad 340 \quad 3.4 \quad \underline{0.034}$

d. $4444440044,400444000 \quad 4440000 \quad 44400000$
e. $0.095 \quad 9.5 \quad 950 \quad 95,000 \quad 9500000 \quad 950000000$ the placement of the decimal point.
4. After a lesson on exponents, Tia went home and said to her mom, "I learned that 10^{4} is the same as 40,000 ." She has made a mistake in her thinking. Use words, numbers or a place value chart to help Tia correct her mistake.
Tin took the 4 and added 4 zeros. This is not the same as

$$
10^{4}=10 \times 10 \times 10 \times 10=10000
$$

5. Solve $247 \div 10^{2}$ and 247×10^{2}.

$$
2.47 \quad 24700
$$

a. What is different about the two answers? Use words, numbers or pictures to explain how the decimal point shifts.
Dividing by 100 makes the number smaller, so the decimal moves two spaces to the left.
Multiplying by 100 makes the number bigger, so the decimal moves two spaces to the right.
b. Based on the answers from the pair of expressions above, solve $247 \div 10^{3}$ and 247×10^{3}.

$$
247 \div 10^{3}=0.247 \quad 247 \times 10^{3}=247000
$$ the placement of the decimal point.

\qquad Date \qquad

1. Convert and write an equation with an exponent. Use your meter strip when it helps you.
a. 2 meters to centimeters $2 \mathrm{~m}=200 \mathrm{~cm}$
b. 108 centimeters to meters

$$
108 \mathrm{~cm}=\underline{1.08 \mathrm{~m}}
$$

$$
\frac{2 \times 10^{2}=200}{108 \div 10^{2}=1.08}
$$

c. 2.49 meters to centimeters

$2.49 \times 10^{2}=249$
d. 50 centimeters to meters

$$
50
$$

$$
\mathrm{cm}=0.5 \mathrm{~m}
$$

$$
50 \div 10^{2}=0.5
$$

e. 6.3 meters to centimeters
 $\mathrm{m}=\underline{630} \mathrm{~cm}$ $6.3 \times 10^{2}=630$ 7 $\mathrm{cm}=0.07 \mathrm{~m}$
$7 \div 10^{2}=0.07$
f. 7 centimeters to meters \square
g. In the space below, list the letters of the problems where smaller units are converted to larger units. (b), (d), (f)
2. Convert using an equation with an exponent. Use your meter strip when it helps you.
a. 4 meters to millimeters $\quad 4 \mathrm{~m}=\underline{4000 \mathrm{~mm}}$

$$
4 \times 10^{3}=4000
$$

b. $\quad 1.7$ meters to millimeters \square $m=1700$ mm

$$
1.7 \times 10^{3}=1700
$$

c. 1,050 millimeters to meters

$$
1,050 \mathrm{~mm}=1.05
$$ m

$$
1,050 \div 10^{3}=1.05
$$

d. 65 millimeters to meters
 $\mathrm{mm}=\underline{0,065 \mathrm{~m}}$
e. 4.92 meters to millimeters
4.92 $\mathrm{m}=4920$ mm 3 $m m=0.003 \mathrm{~m}$

$$
\begin{aligned}
& \frac{65 \div 10^{3}=0.065}{4.92 \times 10^{3}=4920} \\
& 3 \div 10^{3}=0.003
\end{aligned}
$$

g. In the space below, list the letters of the problems where larger units are converted to smaller units.

$$
(a),(b),(e)
$$

3. Read each aloud as you write the equivalent measures. Write an equation with an exponent you might use to convert.
a. 2.638 m \qquad mm

$2.638 \times 10^{3}=2.638$
$7 \div 10^{2}=0.07$
$39 \div 10^{3}=0.039$
$0.08 \times 10^{3}=80$
$0.005 \times 10^{2}=0.5$

b. 7 cm \qquad m
4. Ki Ting's height is 1.49 m . Express this measurement in millimeters. Explain your thinking. Include an equation with an exponent in your explanation.

$$
1.49 \mathrm{~m}=1490 \mathrm{~mm} \quad 1.49 \times 10^{3}=1490
$$

Since 1 meter has $1,000 \mathrm{~mm}$, we multiply 1.49 by 1,000 to get the number of millimeters. This is written as $1.49 \times 10^{3}=1490$.
5. A ladybug's length measures 2 cm . Express this measurement in meters. Explain your thinking. Include an equation with an exponent in your explanation.

6. The length of a sticky note measures 77 millimeters. Express this length in meters. Explain your thinking. Include an equation with an exponent in your explanation.
$77 \mathrm{~mm}=$ \qquad m
$77 \div 10^{3}=0.077$

There are 1000 mm in 1 meter. To convert 77 mm we need to divide by 1000 . This is written as $77 \div 10^{3}=0.077$.

Lesson 4:
\qquad Date \qquad

1. Express as decimal numerals. The first one is done for you.

a. Five thousandths	0.005
b. Thirty-five thousandths	0.035
c. Nine and two hundred thirty-five thousandths	9.235
d. Eight hundred and five thousandths	800.005
e. $\frac{8}{1000}$	0.008
f. $\frac{28}{1000}$	0.028
g. $7 \frac{528}{1000}$	7.528
h. $300 \frac{502}{1000}$	300.502

2. Express in words.
a. $0.008=$ eight thousandths
b. $15.062=$ fifteen and sixty-two thousandths
c. 607.409 six hundred Seven and four hundred nine thousandths
3. Write the number on a place value chart then write it in expanded form using fractions or decimals to express the decimal place value units. The first one is done for you.
a. 27.346

tens	ones	tenths	hundredths	thousandths	
$\mathbf{2}$	7		3	4	6

$27.346=2 \times 10+7 \times 1+3 \times\left(\frac{1}{10}\right)+4 \times\left(\frac{1}{100}\right)+6 \times\left(\frac{1}{1000}\right)$
OR
$27.346=2 \times 10+7 \times 1+3 \times 0.1+4 \times 0.01+6 \times 0.001$

Lesson 5 Homework						
n. 5.1						
tens	ones	tenths	hundredths	thousandths		

$$
0.362=3 \times \frac{1}{10}+6 \times \frac{1}{100}+2 \times \frac{1}{1000}
$$

c. 49.564

tens	ones	tenths	hundredths	thousand this
4	9	5	6	4

$$
49.564=4 \times 10+9 \times 1+5 \times 0.1+6 \times 0.01+4 \times 0.001
$$

4. Write a decimal for each of the following. Use a place value chart to help if necessary.

$$
\begin{aligned}
& \text { a. } 3 \times 10+5 \times 1+2 \times\left(\frac{1}{10}\right)+7 \times\left(\frac{1}{100}\right)+6 \times\left(\frac{1}{1000}\right)=35.276 \\
& \text { b. } 9 \times 100+2 \times 10+3 \times 0.1+7 \times 0.001=920.307 \\
& \text { c. } 5 \times 1000+4 \times 100+8 \times 1+6 \times\left(\frac{1}{100}\right)+5 \times\left(\frac{1}{1000}\right)=5408.065
\end{aligned}
$$

5. At the beginning of a lesson, a piece of chalk is 2.967 of an inch. At the end of lesson, it's 2.308 of an inch. Write the two amounts in expanded form using fractions.
a. At the beginning of the lesson:

$$
2.967=2 \times 1+9 \times \frac{1}{10}+6 \times \frac{1}{100}+\frac{7}{1000}
$$

b. At the end of the lesson:

$$
2.308=2 \times 1+3 \times \frac{1}{10}+8 \times \frac{1}{1000}
$$

6. Mrs. Herman asked the class to write an expanded form for 412.638. Nancy wrote the expanded form using fractions and Charles wrote the expanded form using decimals. Write their responses.

$$
\begin{aligned}
& N: 412.638=4 \times 100+1 \times 10+2 \times 1+6 \times \frac{1}{10}+3 \times \frac{1}{100}+8 \times \frac{1}{1000} \\
& C: 412.638=4 \times 100+1 \times 10+2 \times 1+6 \times 0.1+3 \times 0.01+8 \times 0.001
\end{aligned}
$$

Name \qquad Date \qquad

1. Use >, <, or = to compare the following.

2. Arrange the numbers in increasing order.
$\begin{array}{lllll}\text { a. } & 8.08 & 8.081 & 8.09 & 8.008\end{array}$
$8.008 \quad 8.08 \quad 8.0818 .09$
b. $14.204 \quad 14.200 \quad 14.240 \quad 14.210$
$14.200 \quad 14.204 \quad 14.210 \quad 14.240$
3. Arrange the numbers in decreasing order.
a. $\begin{array}{llll}8.508 & 8.58 & 7.5 & 7.058\end{array}$
8.588 .5087 .57 .058
b. $439.216 \quad 439.126 \quad 439.612 \quad 439.261$
439.612439 .261439 .216439 .126
4. James measured his hand. It was 0.17 meters. Jennifer measured her hand. It was 0.165 meters. Whose hand is bigger? How do you know?

James:
Jennifer:

$$
\begin{aligned}
& \text { James's hand } \\
& \text { is bigger. }
\end{aligned}
$$

5. In a paper airplane contest, Marcel's plane travels 3.345 meters. Salvador's plane travels 3.35 meters. Jennifer's plane travels 3.3 meters. Based on the measurements, whose plane traveled the farthest distance? Whose plane traveled the shortest distance? Explain your reasoning using a place value chart.

$M:$	3.1	4	5	
$S:$	3.3	5		
$J:$	3.3			

Salvader is farthest.
Jeminier is shortest. and express comparisons with $>,<$, and $=$.

Name
Date \qquad

Round to the given place value. Label the number lines to show your work. Circle the rounded number. Use a separate sheet to show your decompositions for each one.

1. 4.3
4.3
$=4.30$
a. hundredths
b. tenths
c. ones
d. tens

2. 225.286
a. hundredths
b. tenths
c. ones
d. tens

o. Lemlis
3. 8.984
a. hundredths
b. tenths
c. ones
d. tens

4. On a major League Baseball diamond, the distance from the pitcher's mound to home plate is 18.386 meters.
a. Round this number to the nearest hundredth of a meter to estimate the distance. Use a number line to show your work.

b. About how many centimeters is it from the pitcher's mound to home plate?

$$
\begin{aligned}
18.386 \times 100= & 1838.6 \mathrm{~cm} \\
& 1838.6 \approx 1839 \mathrm{~cm}
\end{aligned}
$$

5. Jules reads that one pint is equivalent to 0.473 liters. He asks his teacher how many liters there are in a pint. His teacher responds that there are about 0.47 liters in a pint. He asks his parents, and they say there are about 0.5 liters in a pint. Jules says they are both correct. How can that be true? Explain your The teacher rounded to the nearest $100^{\text {th }}$, while parents rounded to $10^{\text {th }}$.

Name \qquad Date \qquad

1. Round the quantity to the given place value. Draw number lines to explain your thinking. Circle the rounded value on the number line.
a. 43.586 to nearest tenth, hundredth , and whole number

b. 243.875 to nearest tenth, hundredth, ten, and hundred

Hundred

2. A trip from New York City to Seattle is $2,852.1$ miles. A family wants to make the drive in 10 days, driving the same number of miles each day. About how many miles will they drive each day? Round you answer to the nearest tenth of a mile.
$2852.1 \div 10=285.21$ which rounds to 285 miles each day.
3. A decimal number has two digits to the right of its decimal point. If we round it to the nearest tenth, the result is 18.6 .
a. What is the maximum possible value of this decimal? Use words and the number line to explain your reasoning.

b. What is the minimum possible value of this decimal? Use words, numbers and pictures to explain your reasoning.

Name \qquad Date \qquad

1. Solve.
a. 3 tenths +4 tenths $=$ \qquad tenths
b. 12 tenths +9 tenths $=21$ tenths $=$ \qquad ones) 1 tenths)
c. 3 hundredths +4 hundredths $=$ \qquad hundredths
d. 27 hundredths +7 hundredths $=34$ hundredths = 3 tenths \qquad 4 hundredths
e. 4 thousandth +3 thousandths = \qquad thousandths
f. 39 thousandths +5 thousandths $=44$ thousandths $=4$ hundredths 4 thousandths
g. 5 tenths +7 thousandths $=$ \qquad thousandths
h. 4 ones 4 tenths +4 tenths $=$ \qquad tenths
i. 8 thousandths +6 ones 8 thousandths $=6016$ thousandths
2. Solve using the standard algorithm.

3. Walkway Over the Hudson, a bridge that crosses the Hudson River in Poughkeepsie, is 2.063 kilometers. Anping Bridge, which was built in China 850 years ago, is 2.07 kilometers long.
a. Which bridge is longer? How much longer? Show your thinking.

An ping is longer.

$$
\begin{aligned}
& 2.063 \\
& 2.070
\end{aligned} 2+0.007
$$

b. Leah likes to walk her dog on the Walkway Over the Hudson. If she walks across and back, how far do she and her dog walk?

$$
\begin{array}{r}
2.063 \\
+2.063 \\
\hline 4.126 \mathrm{~km}
\end{array}
$$

4. For his parents' anniversary, Danny spends $\$ 5.87$ on a photo. He also buys 3 balloons for $\$ 2.49$ each and a box of strawberries for $\$ 4.50$. How much money does he spend all together?
 to a written method. 6/28/13
Date:

Name \qquad Date \qquad

1. Subtract. You may use a place value chart.
a. 9 tenths -3 tenths $=$ \qquad (o tenth
b. 9 ones 2 thousandths -3 ones $=$ \qquad 6 ones \qquad thousandths
c. 4 hundreds 6 hundredths -3 hundredths $=$ \qquad hundreds \qquad 3 hundredths
d. 56 thousandths -23 thousandths $\Rightarrow 33$ thousandths $=3$ hundredths 3 thousandths
\qquad
\qquad
2. Solve using the standard algorithm.

3. Solve.

4. Mr. House wrote 8 tenths minus 5 hundredths on the board. Maggie said the answer is 3 hundredths because 8 minus 5 is 3 . Is she correct? Explain.
She is wrong because 8 and 5 have different units.
5. A clipboard costs $\$ 2.23$. It costs $\$ 0.58$ more than a notebook. Lisa buys two clipboards and one notebook, and paid with a ten dollar bill. Use a tape diagram with calculations to show her change.

\qquad Date \qquad
6. Solve by drawing disks on a place value chart. Write an equation and express the product in standard form.
a. 2 pips of 4 enenhs 2×0.4
b. 4 groups of 5 hundredths

$$
4 \times 0.05=20 \text { hundredths }
$$

d. 3 times 5 hundredths
b. 4 times 7 tenths $4 \times 0.7=2.8$

$$
\begin{aligned}
& =2 \text { tenths } \\
& =0.2
\end{aligned}
$$

f. 6 thousandths times 8

$8 \times 0.06=48$ thousandths

28 tenths
c. 9 times as much as 7 tenths

$$
=0.048
$$

2. Draw a model similar to the one pictured below. Find the sum of the partial products to evaluate each expression.
a. 4×6.79

6 ones	+7 tenths $\quad+9$ hundredths	
4×6 ones	4×7 tenths	4×9 hundredths

$24+28$ tenths 36 hum der $e^{\text {Ph })} 27.16$
$24+2.8 \quad 0.36$

COMMON CORE

Lesson 11:

Date:

Multiply a decimal fraction by single-digit whole numbers, relate to a
 understanding, and explain the reasoning used. 12/31/13
b. 6×7.49 hundredths

c. 9 copies of 3.65

d. 3 times 20.175

3. Leanne multiplied 8×4.3 and got 32.24. Is Leanne correct? Use an area model to explain your answer.

4. Anna buys groceries for her family. Hamburger meat is $\$ 3.38$ per pound, sweet potatoes are $\$ 0.79$ each, and hamburger rolls are $\$ 2.30$ a bag. If Anna buys 3 pounds of meat, 5 sweet potatoes, and one bag of hamburger rolls, what will she pay in all for the groceries?

$$
\begin{aligned}
& 3 \times 3.38=10.14 \\
& 5 \times 0.79=3.95 \\
& 1 \times 2.30=2.30 \\
& \$ 16.39
\end{aligned}
$$

© 2013 Common Core, Inc. Some rights reserved. commoncore.org

Multiply a decimal fraction by single-digit whole numbers, relate to a
 understanding, and explain the reasoning used. 12/31/13

Name \qquad Date \qquad

1. Choose the reasonable product for each expression. Explain your thinking in the spaces below using words, pictures, and numbers.
a.
2.1×3
$2 \times 3=4$
0.63

63
630
b.
4.27×6
4×24
2562
256.2

2.562

d. 9×4.82	4.338	433.8

2. YiTing weighs 8.3 kg . Her older brother is 4 times as heavy as her. How much does her older brother's weight in kg ?

$$
4 \times 8.3
$$

3. Tim is painting his storage shed. He buys 4 gallons of white paint and 3 gallons of blue paint. If each gallon of white paint costs $\$ 15.72$ and each gallon of blue paints is $\$ 21.87$, how much will Tim spend in all on paint?

4. Ribbon is sold at 3 yards for $\$ 6.33$. Jackie bought 24 yards of ribbon for a project. How much did she pay?

2
6.33
x
\$50

Name \qquad Date \qquad

1. Complete the sentences with the correct number of units and complete the equation.
a. 3 groups of
 tenths is 1.5

$$
1.5 \div 3=0.5
$$

b. 6 groups of
 hundredths is 0.24

$$
0.24 \div 6=0.04
$$

c. 5 groups of
 thousandths is 0.045

$$
0.045 \div 5=0.009
$$

2. Complete the number sentence. Express the quotient in units and then in standard form.
a. $9.36 \div 3=$ \qquad ones $\div 3+\ldots$ hundredths $\div 3$

c. $\begin{aligned} .555+5 & =\frac{35}{7 \text { tenths }} \text { enths } 5+\frac{5}{5}+1 \text { hund reedths }\end{aligned}$
\qquad
 relate to a written method.
d. $\begin{aligned} 3.545 \div 5 & =\frac{35 \text { tenth } \div 5+45 \text { thousandths } \div 5}{7 \text { tenths }+9 \text { thousand th s }} \\ & =0.709\end{aligned}$
3. Find the quotients. Then use words, numbers, or pictures to describe any relationships you notice between each pair of problems and quotients.
a. $\begin{aligned} 21 \div 7 & =3 \\ 7 \times 3 & =21\end{aligned}$

$$
2.1 \div 7=\frac{0.3}{7 \times 0.3=2.1}
$$

b. $48 \div 8=6$ $0.048 \div 8=0.006$

$$
8 \times 6=48
$$

$$
8 \times 0.006=0.048
$$

4. Are the quotients below reasonable? Explain your answer.
a. $0.54 \div 6=9$

No, because $6 \times 9=54$, not 0.54
b. $5.4 \div 6=0.9$

Yes, because $6 \times 0.9=5.4$

Date: relate to a written method.
\qquad Date \qquad

1. Draw place value disks on the place value chart to solve. Show each step using the standard algorithm.
a. $5.241 \div 3=$ \qquad

Ones	Tenths	Hundredths	Thousandths
		$\begin{aligned} & \phi \phi \phi \phi \\ & >\phi \phi \phi 0 \end{aligned}$	
\bigcirc	\bullet	- - -	$0 \cdot \bullet$
-		- - -	$0 \cdot 0$
\bigcirc	\bullet	- - -	$0 \cdot$

b. $5.372 \div 4=$ \qquad

Ones	Tenths	Hundredths	Thousandths
	$\begin{aligned} & \phi \phi \sigma \\ & \phi \phi \phi \phi \\ & \phi \phi \phi \phi \end{aligned}$		$\begin{aligned} & 6 \% \\ & 6 \% \% \% \% \end{aligned}$
-	- ○○	$\bigcirc \bigcirc \bigcirc$	- -
-	- -	- - - -	- - -
\bullet	- - -	- - -	- -
-	- - -	- - - -	- - -

2. Solve using the standard algorithm.

3. Mrs. Mayuko paid $\$ 40.68$ for 3 kg of shrimp. What's the cost of 1 kilogram of shrimp?

 1 kg of shrimp will cost \$13.56 . $\begin{array}{r}$| -31 |
| ---: |
| 10 |
| -9 |
| -16 |
| -15 |
| 18 |
| -18 |

\hline 0\end{array}
4. The total weight of 6 pieces of butter and a bag of sugar is 3.8 lb . If the weight of the bag of sugar is 1.4 lb , what is the weight of each piece of butter?

Name \qquad Date \qquad

1. Draw number disks on the place value chart to solve, and show your steps using long division.
a. $0.7 \div 4=$ \qquad

b. $8.1 \div 5=$ \qquad

COMMON CORE
2. Solve using the standard algorithm.

b. $3.9 \div 6=$

c. $9 \div 4=$ $\begin{array}{r}.65 \\ 6 \sqrt{3.90} \\ =36 \\ 30 \\ 30 \\ \hline 0\end{array}$
c. $9 \div 4=$

3. A rope 8.7 m long is cut into 5 equal pieces. How long is each piece?

4. Yasmine bought 6 gallons of apple juice. After filling up 4 bottles of the same size with apple juice, she had 0.3 gallon of apple juice left. What's the amount of apple juice in each bottle?

I COMMON CORE

Divide decimals using place value understanding, including remainders in the smallest unit.
6/28/13

Name \qquad Date \qquad

Solve using tape diagrams.

1. A gardener installed 42.6 meters of fencing in a week. He installed 13.45 meters on Monday and 9.5 meters on Tuesday. He installed the rest of the fence in equal lengths on Wednesday through Friday. How many meters of fencing did he install on each of the last three days?

2. Jenny charges $\$ 9.15$ an hour to babysit toddlers and $\$ 7.45$ an hour to babysit school-aged children.
a. If Jenny babysat toddlers for 9 hours and school-aged children for 6 hours, how much money did she

b. Jenny wants to earn $\$ 1300$ by the end of the summer. How much more will she need to earn to meet her goal?

3. A table and 8 chairs weigh 235.68 pounds together. If the table weighs 157.84 lbs ., what is the weight of one chair in pounds?

4. Mrs. Cleaver mixes 1.24 liters of red paint with 3 times as much blue paint to make purple paint. She pours the paint equally into 5 containers. How much blue paint is in each cup? Give you answer in liters.

There is 0.744 L of blue in each cup.

